
PROGRAMMING YOUR WAY

OUT OF THE PAST

%/

M "9 o
I --- 0

_ D ,D

D-_ C"
D
C J

q,)
>, b- v,

¢: C
D £
C e

-a I

& _.':

2. C _

"-{ C ff
'," (,'-. k.
-_. "3
_" a tO

-g

and the
META Project

B_

IK_m Mxaztazo

aSic changes in the way people use and

rogram distributed systems are on the
orizon. These changes range from new

low-level programming techniques that make it

easy to build fault-tolerant distributed applica.

tions that exploit replication and concurrent exe.

cution to a meta-operating system with services

spanning large numbers of machines in heteroge-
neous networks.

A Programming Revolution

Users of distributed-computing systems rapidly

discover how similar such systems are to the time-

shared machines of the 1970s: The pervasive use

of "network transparency" techniques largely

conceals the fact of distribution. For example, the

"_ "_" 5unTechnology

- _ [II_ |l _ll --

Summer 1989

dominant distributed-pro_ammmg technology,

remote procedure call (RPC), permits a program run.
ning on one machine to invoke a procedure resid-

ing in some other prodam. Given adequate lan-

_age support, an RPC interface can hide many
details of message-based interaction and connec-
tion management from a user. The idea of trans.

parency also extends to other parts of a typical
distributed system. Using a filesystem such as

NFS, a program can operate on files that physical.
ly reside on a remote machine in the network

using exactly the same interface as for local files.

If the distributed.computing revolution is under.

way, its impact on how programs are written has
been minor.

This lack of impact is troubling, especially in
light of the many reasons why distributed com-

puting should be different from nondistributed

programming. Parallel computing is certainly

analogous to distributed computing in many re-

spects. Yet, whereas the effective use of parallel

machines has lead to fundamentally new pro-
gramming technologies such as Linda I and CSP,2

the same thing has not happened in the case of

distributed programs. If distributed systems are

built using technologies that proved to be unsatis.

factory in parallel settings, then distributed sys-

tems are probably making ineffective use of con-
currency (parallelism).

The requirements of a distributed application

may go beyond those of a timeshared or parallel

program. Not only does a distributed computer

system need to exploit concurrency, but it may
also need to remain operational in the presence of"
"partial" failures--that is, situations in which one

of the machines connected to a network fails or

becomes partitioned from the others, while the

majority of the machines remain operational and
must reconfigure themselves and continue exe.

cuting. The complementary problem of reinte.

grating a recovered machine into an online sys-
tem also arises.

From this perspective, transparency may not

be such a tremendous win. RPC is a pairwise pro-
gramming methodology: although RPCs can nest,

more complex interactions are not normally con-
structed from RPCs. A transparent R.PC mecha.

nism offers little in applications that require con-
current action by more than two processes at a

time, especially if those processes must cooperate
but are not controlled by a common ancestor.
Moreover, most RPC mechanisms handle failures

by either timing out or by retrying a request sever-

al times, at best providing some form of "at most

once" guarantees. This is not a sophisticated way
of reacting to a failure.

The problem is that the gap between these

mechanisms and a coordinated algorithm (where-
Illustration:
Jack Desrocher

by a set of processes joins forces to solve a prob-
lem in a fault.tolerant manner) is simply too large

for the average programmer to bridge. The unfor-

tunate user whose distributed problem doesn't fit

into these paradigms must undertake a complex

and costly system-development effort or abandon
a distributed solution entirely.

One approach to these problems is to augment
RPC with transactional features oriented toward

controlling concurrency and ensuring that persis-

tent objects can recover their states after failures.

Prominent among efforts to do this are the Argus

system, which focuses on language issues? and
the Camelot system, which focuses on perform-
anceA These sorts of "better behaved" RPC

mechanisms will doubtless play a major role in

the distributed systems of the future. On the

other hand, they are not resulting in fundamental-

ly new strategies for exploiting the network, and

after a 10-year development period, their most

important role has been in creating and managing

special-purpose databases.

The major premise of the authors' project, ISIS,

is that when a distributed system is viewed as a

timeshared system or encourages its users to pro-

gram as if their application were running on a

dedicated idle system, as with transactional RPC,

the most powerful resource that a distributed sys-
tem offers us is lost: distribution itself., We lose the

ability to employ a set of processes in a coordmat-

ed, cooperative attack on a problem. We lose the
ability to apply highly adaptive, reconfigurable

solutions to applications that must remain on line

in the presense of failures and recoveries. And, we

lose the possibility of building a distributed sys-
tem that is more fault tolerant and offers higher

performance than any of its components.
As we enter the 1990s, the state of the art in

distributed computing embodies a paradox. On
the one hand, networks are becoming ubiquitous

and can be used and programmed much like the

timeshared processors of the 1960s and 1970s.

On the other hand, the proliferation of networks

has yet to result in any sweeping changes in the

way we develop software. Furthermore, a large

class of applications seems to lie out of reach:

those that require direct coordination among a

set of processes, replicated data, parallel execu.

tion of requests, or a coordinated response to a

failure or some other reconfiguration event. The

techniques that have helped achieve networked

computing offer no easy solutions to these intrin-

sically distributed applications.

A new programming technology now promises

to open the door to solving these applications: the

ISIS s Programming Toolkit. The ISIS Toolkit is a

"low level" programming technology. It can

change the way distributed systems are built, but

it will not directly change the available higher-

level services of distributed operating systems.

Concurrent with the ISIS Toolkit is the META

project, which is reexamining high.level mecha.

nisms taken for granted in distributed systems--

the filesystem, the shell language, and the admin.
istration tools.

ISIS and META, together with other technolo-

gies, herald basic changes in the way we think

about and use computer networks. Rather than

viewing networks primarily as a way to connect a

program running in one place with a resource
that "lives" someplace else, these technologies

permit distributed software design that makes ex-

plicit use of the distributed character of the net-

work environment. Although no one system ad-

dresses the whole spectrum of distributed

requirements, taken as a composite they offer a

sweeping range of new and powerful ways to ap-

proach distributed problems.

The ISIS Distributed-Computing Model
Prior to a detailed review of the ISIS toolkit, an

understanding of some of the programming

structures of ISIS is helpful. Like most distributed

systems, ISIS is based on processes and messages.

Our notion of a process is the basic UNIX one:

each execution of a program gives rise to a pro-

cess-an address space containing one or more

lightweight tasks (also called threads of control or

lightweight processes). In ISIS, each arriving mes-

sage is handled by a separate task. Although task
execution is FIFO and nonpreemptive, tasks can

explicitly wait on and signal conditzon variables
when desired. (For more on lightweight tasks, re-

fer to The ISIS Programming Manual and User's

C,mde.6)

ISIS assumes that both processes and the com-

munication system can fail. ISIS is limited in the
kinds of failures it can handle. It tolerates commu-

rotation failures that involve lost messages, but it

may hang if communication is completely dis-

rupted between sets of sites by a network parti-

tiomng. 7

ISIS also supports recomCtguration and contin-
ued execution after crash failures, whereby pro-

grams or machines simply stop executing (most
software failures result in crashes of this sort). It is

of limited value in a system subject to more ex-
treme crash modes, such as when a software bug

causes a program to go into an infinite loop or to

send messages containing incorrect data. Because

ISIS has no way to distinguish these behaviors
from correct ones, neither condition can be de-

tected. Yet, if the application designer can detect
such a condition, ISIS does offer tools to over-

come it.

Communication among ISIS processes is by

messages. These contain streams of typed data

items, which are added to the message by use of

format strings (shown below). Because ISIS knows

the type of each data item, the reception side

92 SunTechnology Summer 1989

Analysis Programs

_ [-'] _ Telemetry
/j, _" Do_,°Tmcker

// ----.C]
/ _'_ LAN _,_ Ticker

,/_ .._ _.,_ocesses" I--1
/_ Current-Events

Stockbrokers Databases

Figure l. A stockbroker's trading system

handles byte-order conversions automatically.

ISIS also supports virtually synchronous process

groups. These groups consist of a set of processes

that are cooperating for "some purpose," be it

distributed execution of requests, management

of replicated data, or whatever. A process can
belong to many process groups, and the members

of any particular group need not be identical or

even be programmed in the same language, at-

though they are expected to use compatible

group-management algorithms. Each group has a

symbolic pathname and a unique 24-byte address

that can be used to communicate with it. Group
addresses and process addresses can be used in-

terchangeably throughout ISIS; when a message

is sent to a group address, the system expands this
into a reliable broadcazt s to the current member-

ship of the group.

Before saying more about the notion of virtual

synchrony, or even what it means for a broadcast

to be reliable, we look at some typical ways that

ISIS applications use process groups. To make the
example concrete, consider a stockbroker's trad-

ing system composed of three types of entities

(see Figure 1). At the front end, the system has

workstations that display current quotes and trad-

ing advice. These employ an interactive com-

mand interface. Connected to the system are

"ticker" devices, the computer-readable analog

to the mechanical stock tickers used in the past. In
this system, tickers are redundant because the

risk of a failure must be kept to a minimum. (For

simplicity, the process that handles a given ticker
device is referred to as a ticker.)

The system also provides a variety of analysis
services capable of searching databases for infor-

mation needed by the trader, calculating suggest-

ed buy and sell margins based on trend analyses,
comparing options and futures prices with cur-

rent quotes, and other tasks.

A system such as this could use ISIS process
groups in several ways. At the front end, the set of

stocks that any given broker is monitoring will
likely vary over time, perhaps quickly in modern

program trading. If a ticker process receives a
new quote for Sun, how is it to know what work.

stations currently need this information?

An easy solution is to create a process group for

each stock currently being monitored. All pro-

grams wanting quotes for that stock would join

the group. A ticker would then broadcast quotes

to the appropriate process groups and leave ISIS

to cope with their dynamically changing member-
ship (see Figure 2).

Remember that for reasons of fault tolerance,

ticker processes are redundant. A failure might be

due to the crash of a ticker, or it might be due to a

"softer" problem such as a transient overload or a

burst of line noise that garbles a quote. Ticker

processes can also be redundant for purposes of
load sharing. Even in the absence of failures, a

single ticker cannot practically deal with all

quotes on behalf of all brokers in a large trading

room. Forming the ticker processes into a process

group makes programming the necessary control

algorithm eas)_

ISIS permits users to assign responsibility based
on the initial letter of a stock's name in a manner

Summer 1989 SunTechnology 93

Clients Monitoring "Sun"

Telemetry

Input Ticker

TIME

Sun at 45.50 9:15 am i ,
_ : :

0 0 0
L J

o9

Sun at 45.75 9:18 am i _ _
i

s ,r

Figure 2. l)c kcr_ must deal uit]_ a dl nammal/_ c l_a*t_t,L_ clwm't,l_

that rules out confusion about which ticker han-

dles which stocks--that is, there is no risk of hav-

ing two tickers watching stocks starting with the

letter A and none watching stocks starting with

the letter C. After a system crash or recover); ISIS

provides a reconfiguration method--in this case,

reassigning the letters to ensure full coverage. It

also provides a way to cope with tickers that ga,+

ble or miss individual quotes and to retransmit

quotes that arrive between the time_'hen a ticket

tails and when reconfig-uration takes place. One

could implement a redundant assignment rule--

for example, by arranging for two tickers to ban

die each stock, as shown in Figure 3. Although

quotes arrive in duplicate and stale quotes must

be discarded, when a failure occurs, quotes keep

flowing. Two nearly simuhaneous [ailu,es would

have to occur to prevent a broket flora obtaining

timely information.

T'..c same techniques that _an be used to assi_

stocks to tickers can also be used to subdivide

othel types oftomllutations. For t'xamph+, a tom

plex database search can be dixided into parts

that each member of a set ot servers ,,,,'ill perform

independently {merging the Jesuits ;it the end).

The same mechanisms can also be used tot an

analysis that requires opinions flora multil,le "'ex

perts.'"

Anot htq area in which ISIS oilers Sol_hist i_ated

supl_ort is m tile use of _el)litat,.+,._t data. Pto<.e.,,_,

.knoup inelnl)ets tall easily maintain replkated

data st ruct Ul es. updating them al extrenlelv toxx

cost and permitting direct read access, much as

with an accurate cache.

Replicated data is an example of a gloup state

that changes dvnamicallv Man,.,' servers need to

maintain dynamic state inIormation, be it repli.

cated data. descriptions of pending requests, or

lists of currently held locks. When a process recov.

ers and needs to.join an operational systeln, trans-

fen in_ this inforlnation poses a thor-he problem.

Because the intbrmation changes in response to

some types of events, one must lock out those

kinds ot exents while copying the state of the

,_oup to the new inember. Clearlv. the transfer

must be tauh tolerant.

Oxerall, these [actors add up to the kind ot

prohlcln most ln-okqammers would hnd hard to

solx v. ISIS. however, has a group.join mechanism

that automates the task. The plOknamn+ler sup-

l,lie, a lOutme to t_;msler the gqoup state out to

|}1_ l]lex_ I lnelnbet anti ,i routine to Ietei',,Ie and

unl,atk the stall" wllen it ;uli_.es. ISIS cortecth

svnchl onizes the-join .+and handling failures. Cl:t

mats using the _]Otlp will usu,llh. bt + unawal e thal

a tt+'x_ lnen-dmt ioined while they wt'te talkin_ Io

the t:1oup. Th<' method x_ot k,, x, dl lt>_ states ol up

to a It',,', hundl cd kih.+l+vtcs irl size. v, hit h is enouah

fOl most databast' tuul_oscs ladditionaI lnecha.

nistns t0t grOUl>S man,l_iniz rout h largm states are

nox, bein_ designed,.

What would ISIS ,,t Iw useful [or? One maior

area is tlans,itti<mal databas,_' ;rod hie manage+

tile+It. '+ Solnt+ }_ov, cttul svStvlns tot this task are

<44 h_,,',lc,, hIlt+,lt+_',. <;utnlnt'l 19_9

TIME

DEC: 82.5 et

Sun: 51.0 et

Sun: 51.5 et

Ticker Process Group

i CRASH

i •

<-

Mapping:
Primary(Secondary)

1 A-F (U-Z)
2 G-M (A-F)
3 N-T (G-M)
4 U-Z (N-T)

1 A-H (R-Z)
2 I-Q (A-H)
4 R-Z (I-Q)

Quote arrives

. Tickerbroadcasts

quote

A-H Primary resp.
of ticker

(I-Q) Secondary resp

Figure 3. Using redundancy to obtatn fault.tolerant quote

available, and ISIS was designed to avoid duplicat-

ing these efforts. As a result, although ISIS has

powerful synchronization mechanisms, it is not

oriented toward serialization (a widely accepted

technique for maintaining database correctness)

or atomic transactions (the usual technique for

database crash recovery). Instead, ISIS focuses on

cooperative distributed algorithms and on the vol-

atile and rapidly changing state of a distributed

computation.

Virtual Synchrony

ISIS is not the first system to use process groups,

but its process-group mechanism is unusually
powerful. The reason for this power is a theoreti-

cal advance called virtual synchrony.

When reading about the various schemes for

subdividing work among a set of tickers or a col.

lection of expert subsystems, you may have won-

dered how these schemes can possibly be correct

when failures and recoveries occur. Certainly, al-
most any algorithm that uses RPCs for interac-

tions between the ticker processes and time-outs

to detect failures will be complex and prone to
errors. The risk of ending up in a state in which no

process sends quotes for IBM stock seems very
real (for example, one process covers A.H, anoth.

er J-N, but no process covers I). This situation

occurs if processes have inconsistent views of one

another's status. And, such an inconsistency can

easily arise because transient phenomena and
overloads can mimic failures in net works of work-

dissemination.

stations. Worse, failures and other events might

be observed in different orders by different pro-

cesses in a distributed system. One can imagine
an algorithm that behaves differently on detect.

ing a given event in one state than in another, and

that changes state in response to events it ob-

serves. Two instances of this algorithm might not
give the same behavior even when executed on
the same events but in different orders. If one

treated a transient overload as a failure but the

other did not, inconsistency would certainly arise.

To take an extreme example from a different

setting, consider a factory that produces some

sort of chemical and that the production strategy

changes if some critical valve is not responsive. A

programmer might decide to decentralize control

among a set of control programs to gain increased

fault tolerance and benefit from load sharing.

Should the programmer not now be worried that

one component of the control subsystem could

incorrectly conclude that the valve has jammed,

perhaps because of a communication failure land

hence switch to the emergency shutdown proce-
dure), while the remainder of the system contin.

ues normal operation, unaware of what has hap-

pened? Clearly, correct behavior in each of the

components of a system does not automatically

imply mutually correct behavior of the system as
a whole.

In light of these sorts of problems, how can one

be sure that a rule like the one we proposed for

controlling the set of tickers will operate correctly

Summer 1989 SunTechnology 95

P1 P2 Sl S2

........................... °

$3

........... _'J'.Gg IS

Figure 4. In a synchronous execution, opal3' one event can happen at a time. However, a single event can occur (or

be observed) at multiple places, as with the delivery of a broadcast or the detection of a failure

Figure 5: A virtually synchronous execution is indistinguishable to the application from a srplchronous one Event

ordermgs may differ from process to process but only if behavior of the application is unaffected.

P1 P2 Sl S2 S3

O

in other applications? How is it possible to decen-

tralize a factory.control system with confidence

that it will still function correctly?

Virtual synchrony efficiently solves this class of

problems• It starts with a simplified model for

how a distributed system executes--the program
is coded as if this model were realistic. Then,

much as a compiler may produce code that differs

from the original program without changing its

behavior, the distributed program is executed in

ways that improve efficiency and permit it to run

in a realistic environment while preserving cor-

rectness. Because the program is written for a

setting that differs from the one in which it runs,

ISIS supports a vtrtual environment.
The idealized environment of 1SIS is illustrated

by the distribution of quotes to a set of application

programs shown in Figure 4. Here, time advances

from top to bottom, with one distributed event

occurring per time interval. The types of events

shown include broadcasts of quotes, failures, and

joins. Notice that a broadcast to a group is always
delivered to all the current members at once. Sim-

ilarly, all group members see failures in unison.

A synchronous system can be inherently costly

and scale poorly. To avoid this problem, ISIS runs

programs designed for synchronous environ.
ments in a much more concurrent manner by

relaxing any kinds of synchronization that the

algorithm doesn't really depend upon. For exam-
ple, if a synchronous algorithm doesn't look at a

realtime clock, it will execute correctly even in a

"loc, sely" synchronous setting, where event order-

rags are the same as for a synchronous environ-

96 SunTechnolog)" Summer 1989

ment;buttheactualtimeatwhicheventsoccuror
messagesaredeliveredcandifferfromprocessto
process.A virtuallysynchronousenvironment
goesfurther:mmanycases,it presentseventsm
differentordersbydifferentprocesses,provided
thattheyallbehaveindistinguishablyfromsome
synchronousexecution(seeFigure.5).

Theideaofvirtualsynchronyisrootedindata-
baseanddistributedsystemstheory.10Onerea-
sonwhytheideawasnotappliedto distributed
systemssooneristhatit needsacarefulanalysisof
theorderingrequirementsoftheapplicationbe-
ingrun,andlackingsuchananalysis,perform.
anceiscertaintobepoor.ISISapplicationsinter-
actthroughourtoolkit,however,sothetoolkit
algorithmscanbeanalyzedandoptimized,and
thisbenefitsISISapplicationsasawhole.I1

In practicalterms,virtualsynchronymeans
thatISISapplicationsexecuteinasimplifiedenvi-
ronmentinwhichalayerofsoftwarehidesmany
ofthedifficultiesthatmakedistributedprogram-
mingsohard.AlltheISIStoolshavesimpleinter-
facesandsimplebehavioraldescriptionsthatin-
cludefailurecases.Usercodecarrieslittleriskof
unpleasantsurprisessuchasraceconditions,in.
consistentviewsofthestatus(failedoroperation-
al)of processes,ororderinganomaliesthatcan
leadtoinconsistentbehaviorsindifferentpartsof
asystem.

AbriefreviewoftheISIStools,withcodefrag-
mentsasexamples,makestheideaofvirtualsyn-
chronymoreconcrete.AllISIStoolscanbeused
fromC, Lisp, and FORTRAN and, if desired, in
conjunction with other mechanisms such as Sun-
tools or NeWS and X Windows.

Messages

ISIS defines a new type of object called a message.

ISIS uses messages in various ways. A message is
created and manipulated much as an input/out-

put stream is. The sequence in Figure 6 creates a
message and then scans the contents into vari-

ables stock, date, time, and quote. Notice the similar-

ity to fprintfand fscanf. Format items may spec-

ify base types (as above), variable-length arrays, or
user-defined structures.

The most common thing to do with a message

is to send it to an entry point defined by another

process. Rather than require three steps for this

process (generate, transmit, deallocate), many

ISIS system calls combine all of these steps into a
single action (see below.)

Joining Process Groups

and Obtaining Group Views

A process uses the pg_join request to join a pro-
cess group. As Figure 7 shows, several sorts of

options can be specified. Here, the calling process

requests that it be added to the process group

named /analysis/technology. The group re-

Summer 1989

message*tap;

mp- msg._gen(''%s,Y,s%0, %f", "SUN'',"3117/89", 1022,I_.5):

msg_get(mp,"_, gs Ya:l,%f", &stock,&date,&tlme,&Quote);

Figure 6. CreaUng a message and scantttng the contents into stock, date, time.
andquote t'artaOles.

Figure 7. Specifying options tojoin a process group

gaddr= Pg_Joln('"ONewYork:/analysis/technology''.
PG_CREDENTIALS,' 'signature'',

PG_XFER,gstate_out,gstate_.tn,

PG_QONITOR,gstate_mon,

PG_INIT,gstate_Inlt,

PG_LOC_D,TRUE,

0};

sides in a group of sites called "New York" (site

groups are somewhat like process groups, al-

though less dynamic). The handling of the join

depends on whether or not the group is already

operational within this group of sites, If it is, the

credentials string is used to validate permission
of the new process to join. A state transfer is then
initiated by invocation of the state transfer "out"

routine in some operational group member. This

encodes the state into one or more messages and

then transmits them by calling an ISIS-supplied
xfer_out routine; for each call, the correspond.

ing "in" routine (here, gstate_in) will be invoked

remotely. Figure 8 illustrates this.

The pg_join routine behaves differently if the
group is not already running. In this case, ISIS

creates a new instance of the group from scratch.

If the group state is not logged (controlled by

PG_LOGGED), or if this is the first time the ap-
has ever been started, ISIS calls the

PG_INIT routine. Otherwise, if the member is

one of the last to have failed in the old group, the

group state is rolled in from a log automatically
maintained by ISIS on behalf of the member. If

the log is out of date, the joining process must wait

until the last members to fail recover. Logging is

not the default and is not lLkely to be common in
ISIS.

Finally, ISIS posts a monitor. Each group mem-
bership change is reported to the routine

gstate_mon, and if all group members monitor

the membership, the changes are synchronous.

Although 7oming is a multistage algorithm, it
looks to the outside world like an instantaneous

event (see Figure 9). For example, no broadcast

ever reaches some group members before a join,

and a broadcast reaches some after, so group

members can use the group-membership "view"

as part of the algorithm for deciding how to be-

have. (Remember the ticker example?) This data
structure lists the current members in the order

they joined. Group membership lists change one

SunTechnology 97

TIME

Clients of "Sun"

i
: !

°°

°#"

! i .-"

_--" Old Member

_ Sends State

0

°°

,.°

..°

°

Client Wants
To Join

New Member

Operational

Figure 8. State transJ_r to a new member of a process group.

Figure 9. Group joins appear msta_ttaneous to the outMde world.

I

i ! Client Joins

and

State Transferred

by one, and all members see the same changes

and in the same order with respect to other types
of events.

Broadcasts and Replies

To broadcast to a process group, a pro_am first

looks up its group address and then sends the

desired message. If a reply is needed, the caller

can wait for one, all, n, or a majority of replies.

The general format is:

bcast(addr,entry,out_fmt,out_data,n_replles.

input_format•&replles):

The sender specifies the address of the destina-

tion process or group, the message to send, the

number of replies desired, and (if nonzero} the

reply format and variables into which the replies
should be scanned. Notice that beast combines

the interface of msg_gen with that of msg_get.

The ticker process might include code like that in

Figure 10, in which the set of clients interested in

Sun quotes is represented by a process group and,

if the group is not empty, the new quote is trans-

mitted asynchronously (without waiting for deliv-

ery to occur). NEW_QUOTE is an entr_ number.
The idea is that each service exports (as part of its

interface definition) the entQ' numbers of services

it provides, much like the procedure identifiers

used in an RPC protocol. Users of the se_'ice

98 SunTechnolow_ Summer 1989

identifytheir request by specifying an entry- num-
ber, as shown in Figure 10. Processes that have the
service tell ISIS what routine to call when mes-

sages of this sort are received. They use:

isls_entry(NEW_QUOTE,new_quote."got quote");

When the quote arrives, ISIS invokes the desig.

nated procedure as a new lightweight task:

ne,_quote(mp)

message*mp;

msg_get(m_."_s: %s_d._f".);
}

If needed, a reply can be sent like the original

request. Facilities for determining who sent a

message, forwarding a message, dealing with fail.

ures that occur while waiting for responses, and
other instances are available with ISIS.

Replicated Data, Synchronization,

and Distributed Computations

ISIS can help a program maintain replicated da

using a broadcast to update it but reading data
locally If desired, a synchronization mechanism
based on tokens or locks can be used. Our method

is fault tolerant and has a roll-forward recovery
scheme when failures occur. More important, it is

asynchronous: No process ever blocks when do-

mga read or an update or releasing a lock (block.

hag when a lock is requested is obviously unavoid.

able). This means that replicated data in ISIS costs

little more than unreplicated data, provided that
the network bandwidth can accommodate the

background message traffic generated. In practi-

cal terms, ISIS VI.2 can update data replicated

among 5 processes on separate Sun-3/60 worksta-

tions at a rate of 50.100 updates per second.

ISIS has several choices for distributing a com-

putation across the members of a group. A coordi-
nator-cohort scheme selects some member to be

responsible for a request. Noncoordinator pro-

cesses function as passive backups, taking no ac-

tion unless a failure occurs (if replicated data
is updated, the coordinator broadcasts its

changes).

The approach handles load sharing by permit-

ting multiple coordinators to run simultaneously
in different processes when several requests are

pending. A redundant computation is one in

which all members execute a request in parallel,
presumably arriving at identical results and

changing replicated data in identical ways. A

third option is a subdivided computation, in which

each member performs part of a request, with

the collected outcome presented to the caller.

Any of these methods can be programmed
with one or two subroutine calls to ISIS. In addi-

Summer 1989

tion, callers can transmit a request to a subset of
the group members, rather than broadcast to all

if only a single response is needed.

Watching and Monitoring

ISIS provides ways to monitor changes to group
membership and to watch individual processes

for failure. The system ensures that if any process

senses a failure, all interested processes will ob-
serve the same event. If the failure is transient, the

"failed" process will be forced to rejoin the sys-

tem, discarding or retaining and updating its in-

ternal state at the programmer's option.

The toolkit contains other facilities, including

an automated program-restart facility that oper.

ates after crashes and onsite recovery, a news

facility for a program.level analog to the network.

news service, and an extensive log-based recovery

mechanism. This facility is now being extended to

allow an operational group of processes to log
information for a process that is inaccessible or

down, as an alternative to doing a large state
transfer when it recovers.

A Distributed Algorithm for

Subdividing a Task

In the ticker example above, recall the problem of
subdividing work among a set of tickers. To solve

this problem, we can program the tickers to moni-

tor group membership, noting the number of

members (nmembers) and their relative ranking in
the list (rank). Given that all members see the

same sequence of group views, dividing the alpha-

bet into nmembers parts is straightforward, as is

assigning responsibility for the ith part to the two

processes with ranks equal to t and (i +1) rood
nmembers.

Each time membership changes, the work as-

signment must be recomputed, raising the ques-
tion of how to synchronize the ticker input stream

with the membership changes. Obviously, if the

input stream is obtained from the DowJones wire
service, it will not arrive in the form oflSIS broad-

casts. Consequently, if one process switches be-

fore some other process does, a gap may result
during which coverage of the stocks is incom-

plete. One way to solve this problem is for pro-
cesses to operate briefly under two rules simulta-

neously: the old rule and the new one.

Meanwhile, a distinguished process (say, the one

with rank 0) polls the group to confirm that all

members have actually started using the new
ranking. When this has occurred, a broadcast is

transmitted to inform group members that they
can stop using the old ranking. Briefly, clients will

have received as many as four copies of some
quotes, but none will be missed.

Figure 11 shows a fragment of the correspond.
hag code as it might be implemented in ISIS. As-

sume that ticker_mon was specified in pg_join

SunTechnology 99

Fi_re 10. Tzckerprocess in which

cltents tnterested in Sun quotes are

represented b3, a process group.

new_sun_QuoteC...)

(
_res$ g_r;

_r - _C' 'lmvorkstatlons:/st_ks/_n' ') ;

1fC!ac_r_IsnullCgoadr))
bcastCg_r, NEW_QUOTE,"_..."," SUN",...O):

}

Figure 11. Program to distribute stock quotes.

_leflne POLL 1

•define SWITCH 2

I*Thlstlcker'sprlmmryarwJsecon_ry responsibilities*I

charPrlmLow,PrlmHlgfi,SecLow,SecHlg_:

I*Ifno_-zero,weareswitchingtonewvalues*I

charOlcPrlmLow,OlcPrlmHlg_,OldSecLow,OldSecHlgfi;

,deflnebetween(c,low,hlgfi)(c)- low&&c (-hl_)

malnC)

(
isls_entryCpo11,POLL,"polla_r");

isls_entryCswltcbover.SWITCH,"swltchovercW)ne"):

pg_jolnC'INYC:tlckers",PG_NONITOR,tlcker_moo....};

/"Create"wlremonltorlng"task"/

t_fork{watch_wire);

Isls_malnloop{);

}

I*RedoQuotesfromthe tlcker,asifitwerea keyboard*I

watch_wire()

{
_ile(TRLE)

(
/*Get a newquotefromthewlre,dlssamlnate"/

reacLquote(&stock,&c_te,&time,_rlce);

got_quote(stock,date,tlm, price);

}
}

/'On recelvlnga newquote,broadcastitifI am

responsible*/

got_quote(stock,date,time,price)

char*stock,*date:

inttime, prlce:

register c = *stock;

ifChetween(c.PrlmLow,PrimHig_)IIDetmm'enCc,SecLow,
SecHlgh) II

(Olc_rlmLow_ (hetweenCc,OldPrimLow,Ol_rt_lg_) 11
...))

I" DcastIfI sl_oula _ss_nate thls

Quote*I

a(laressga_lr - pg_lo_up(stocK);

itCtacw_Isnuncg_r))

tC. _EW_QtI3_,"_: %sI(I,_"

.... 0);

/*l_.onflgure aftergro_m_rsblp changes*I

tlcKer_mo_Cgv)

groupvle_ 'gv;

(
/" Temporarily use both work decompositions */

Olc_rt_Low - PrlmLow; Ol_Prl_igh - PrlmHlg_: ...

PrlmLo_ - 'A' + _6/gv-)gv_nmembers'my_rar_(gv);

PrL_I_- 'A' +

_6/gv-)gv_rmmbers*mxl(l*my_ranK(gv).

gv-)gv_nmembers)-l:
SecLow- etc;

ifCmy_rankCgv)--O) {

/*Pollgroupers (Lnclu_Ingself)*/

bcastCtlckgroup.POLL,'"', ALL. ''");

/"Allc_ swltchover"/

bcast(tLckgroup,SWITCH,"", 0);

}
}

I*Sen_anen_)tyreply; m_atcountsisthatI got

themessage*I

pon(_p)

message *lAp ;

(
reply(m_, '"');

)

I*SwltcheverISc_lete(l.St_n)nltorlngstocksfrom
oldview*I

swltcbover{_)

message"rap;

(
01_Pr11.ow- Ol_PrlmHl_- ...- O;

}
.-i: ; L,.!:< Q_-AL_._/

100 SunTechnology Summer 1989

as the routine monitoring the state of the ticker

group. The method is slightly simplified for pre-

sentation. For example, it should be extended to

deal with multiple failures by having a list of old

mappings, instead of just one. It would also be

desirable to cache group addresses.

The idea of virtual synchrony simplifies the

switchover logic. Because the process doing the

polling operation has already observed the new

view, all processes that receive a poll message will

also have seen it. Thus the replies they send need

not carry any data. Because the sender waits for

replies from everyone, the sender cannot meet

our objective of executing the second.stage

broadcast {the one to the SWITCH entry point)

when all the processes have definitely received
the new view.

The algorithm in Figure 11 cannot tolerate a

second failure that occurs before it switches over

the new work assignment. The problem is that the

group could start a second reconfiguration while

the first is still underway. The switchover message

for the first failure would then be interpreted as if

it applied to the second failure. One possibility is

simply to accept the risk that a few quotes will be

lost if two failures occur in rapid succession, al-

though the odds are small. The alternative is to

change ticker_mon to eliminate this problem by

checking to see if the view sequence number for the

group changed while the POLL was occurring.

ISIS maintains view sequence numbers, which in-

crement with each view change. If the number

does change, the SWITCH message should not

be sent. Some other task, which is also running

ticker_mon, will be responsible for new reconfi-

guration. _z Figure 12 shows a version that toler-

ates arbitrary sequences of failures.

Although the logic behind this change is subtle,

keep in mind that without ISIS, the same problem

is nearly impossible to solve in fault-tolerant fash-

ion. Also, much of the complexity stems from

tieker_mon's being a lightweight task that can

be reentered while it is asleep in beast, a potential

problem in any system with lightweight tasks.

ISIS may not make fault-tolerant reconfiguration

easy, but it does make arriving at a concise, cor-

rect solution feasible.

The META Operating System

Mechanisms such as remote procedure calls and

the ISIS tools act as a "glue" programmers can

use to build distributed programs. With the ISIS

Toolkit, programmers can concentrate on prob-

lems such as how certain data structures should

be shared and how control should be distributed

and ignore problems such as how failures can be

detected consistently or how updates to a replicat-

ed data structure can be made atomic. In a formal

sense, ISIS does not allow programmers to write

more powerful programs, but it does make the

Summer 1989

tlckerJ0n(gv)

gr'oupv:l_ "gv:
{

Int v1_id - gv)gv_vl.ewld;

I* Record old values if reconflguratlon is not already unOer_ay */

If(010PrlmLow -- 0)

{ 01dPrlmLow - PrlmLo_; 01dPrtmM1_ - PrlmHlg_; ... }

PriJm.om- 'A'+ 26/gv-)gv_nmembers'my_raak[gv):

Prl_lgh= 'A'+ 261gv->gv_nmem_ers*mod(1+my_rarW((gv),gv-)gv_nmel)ers)-1:
.... etC

tfC.y_rankCgv]--o) {

aSt[tlckgr. POLL. ' '''. ALL. " '''} :

I*Checkto ma_esurevlew01_n'tchange_11e waltlngforreplles"I
if{gv-)gv_vle.la--vlewi0

bcast[tlckgroup,SWITCH.''". 0]:
}

}

Figure 12. A fault-tolerant version of the ticker_mort procedure,

task much easier, and the chances of the program-

mer's writing a correct fault-tolerant distributed

program are much higher than if he were to use

simple remote procedure calls.

Distributed systems, however, are not merely

distributed programs. Applying the term system to

a set of programs, distributed or centralized, ira.

plies that the interconnections between the pro-

grams are nontrivial. Moreover, a distributed sys-

tem must deal with a complex and changing

runtime environment. For example, consider the

stock-brokerage system. We may want to monitor

the news wires for keywords and have market-

forecasting programs adapt to major world news

events. When such an event occurs, the entire set

of programs run may differ from the normal case.

That is, a single external event can have sweeping

implications that span most of the distributed sys-

tem. To solve this kind of problem, especially if

our system may have to deal with many such

events in differing ways, we again need glue.

Here, however, the glue permits us to doprogram-

ruing in the large.

In essence, a distributed system consists of a set

of programs, which may be distributed ones, and

a form of glue that controls and interconnects

them. Typically, the system is mediated by the

operating system. In current distributed systems,

the varieties of glue consist of network Jervices such

as fileservers, electronic-mail servers, name-

servers, lock managers, and even ticker services.

Unfortunately, network services are not every-

thing that's needed. The programmer is still

forced to worry about basic problems of how to

monitor for an event, how to alert a program that

an event has occurred, or how to ensure that the

failure of a server won't cripple the system. Net-

work services are lacking mechanisms analogous

OF POOI_ QUALITY

SunTechnology 101

to those in the ISIS Toolkit, but they are oriented

toward programming in the large. As a result,

program interconnection in current distributed

operating systems is unsophisticated at best. It is

hardly surprising that current distributed systems

provide tittle more than a collection of local oper.

ating systems supporting remote execution, load
balancing, and transparent location of files.

Like ISIS, the META project provides a better

glue. Our objective is to build a layer of operating-

system.like software that will span many ma-
chines in a network: on the order of hundreds to

thousands of workstations. META will not replace

the underlying operating systems but instead will

offer the higher-level glue to allow large fault.

tolerant distributed applications to be easily inter-
connected and controlled.

Currently META consists of three major pieces:

1. A distributed, highly available filesystem built

from standard network filesystems and that

supports the standard NFS file-access proto-
cols.

2. An event manager that allows programs to

interact by using fault-tolerant events.

3. An event monitor that interprets policy rules

written in a system-independent language.

META is in an early stage of development and

experimentation. The structure will change and

expand with time and experience.

The META File System

The filesystem is the pivotal component of a dis-

tributed system. Virtually all sharing of persistent

data occurs through the filesystem, and much of

the performance of a distributed system is deter-

mined by the performance of the filesystem. As a

result, the majority of the current research taking

place in distributed filesystems has focused on

increasing performance. Ls

Performance is not the only property needed

from a distributed filesystem. Also important is to

ensure availability to key files; otherwise, the fail-

ure of a server can lock an application or the

workstation itself. Key files include relatively stat-

ic ones such as system-configuration files and dy-
namic ones such as log files and text files. More-

over, the distributed filesystem should provide

the structure needed to interconnect perhaps

hundreds of filesystems, including slow local

ones, large shared repositories, and special-pur-

pose filelike devices into a coherent whole. A dis-

tributed fllesystem should also be easy to man.

age; current ones require too much effort on the

part of the system administrators who partition

disks schedule backup procedures.

The META File System consists of two parts: a

dLstributed control service that uses file replication to

give high availability and a set of data repoutor, es.

The control service implements both replication

and the distributed filesystem abstractions need-

ed to deal with large-scale file management. The

repositories consist of commercially available file.

servers that can also be used to store nonrepticat.
ed files.

The current prototype uses a simple file replica-

tion algorithm and stores files on NFS servers. _4It

is completely transparent to both clients and serv-

ers. Its structure is shown in Figure 13. The inter-

mediate agents implement the META File System

control service. They guarantee that all updates

are ordered with respect to other updates, that all

available replicas are written, and that the crash

and later recovery of an NFS server makes the

replicas on that server current. The replication

incurs a cost, but UNIX caching hides the major-

ity of it.

The META Event Manager

A filesystem lets programs share data, but it is not

very useful for synchronization of programs. In

order for programs to interact, they need a way to

signal and await conditions, at a high level that

can span large numbers of machines or programs.

For example, consider a utility called PMake,
which is a distributed version of the UNIX make

program. PMake needs to locate a set of machines

that are lightly loaded, have the correct construc-

tion tools available, and have enough resources to

complete a set of construction steps in a reason-

able amount of time. Lacking META, PMake

must solve this problem by talking with a name-

server to locate a set of possible machines, a lock

manager to tentatively allocate the machines, and

rstatd to determine if the machine is lightly load.

ed. There simply isn't any easy way to decide if

machines have the right tools or filesystems

mounted. If these or other properties are taken

into account, either an existing service would

have to be expanded or a new one written.

The META Event Manager makes writing pro-

grams such as PMake easier. Like the META File

System, the Event Manager is primarily a distrib-

uted control program that mediates between pro-

grams awaiting general events or needing re-

sources into specific requests on existing services.
PMake issues a description of its needs to the

Event Manager and simply waits for the Event

Manager to satisfy them. The Event Manager in-

chides a generic "server" for new types of queries
to be added easily. The architecture of the Event

Manager is shown in Figure 14.

As seen by a client, the Event Manager has a set

of tables and functmns that represent, respectively,

static and dynamic properties about the system.

The client can query these tables with a simple

procedural interface. At this level, the Event Man.

ager resembles a temporal database with highly
available tables. J5

102 5unTechnology Summer 1989

\

I i I .s.rv.r
Figure 13. META Ftle S)'stem architecture A

substantially extended cersion should be operational
in mid. 1989

[Client Client I ,, I

I Functions] I Tables

Manager [Manager I
State I State I " ° °

State State

I Sensor I Sensor I

F|gure 14. META Ez,ent Manager architecture

Internally, the Event Manager maintains the

tables and functions both as private tables and as

queries to existing services. The Event Manager

uses replication for fault tolerance. This manager
can take advantage of any replication that the

existing services already supply. For example,
suppose the Event Manager maintains a function

representing the temperature inside a reaction

vessel. For this value to be available, some replica-
tion must exist; otherwise, the single failure of the

only temperature sensor will make the function
inaccessible.

Two methods are available for doing the repli-

cation: another temperature sensor or a pressure

sensor and use of Boyle's law. By having programs

read these values indirectly through the Event

Manager, either physical value can be translated

into the desired logical one by a single computa-

tion (supplied to us by the programmer who de-
fines "temperatures").

New services can be added by a method similar

to RPC stub generation. When creating a new set.
vice, the implementor writes an interface describ-

ing the information being sensed and the kind of

sensor available (for example, edge sensitive or

polled). A stub compiler generates a sensor stub
that calls the sensor, a monitor stub the Event

Manager uses to access the sensor, and location

information that allows the Event Manager to
bind to the sensor.

The META Event Monitor

PMake might want to allocate five Sun-4 worksta.

tions, each with a low load and 16 MB of memory;

Summer 1989

however, there may be other restrictions on the

workstations chosen. For example, if a worksta.
tion is slated for maintenance in the next hour, or

the network to which the workstation is attached

will be used for several large file archives, the

workstation should be considered temporarily un.
available. The programmer cannot know all the

restrictions ahead of time, so the Event Manager

denotes an abstract property of the workstation:
its availability.

How will an event be generated? Rather than

write a separate program monitoring each possi-

ble condition, the META Event Monitor keeps a

simple rule base specifying the conditions that lead

to a workstation's unavailability. Here, one rule
might be:

DURINGStartP_(machtne)- I hourTOEnaPM{macbtne)

THENUnavailable(machine)

The META Event Monitor is not meant only for
monitoring network conditions. It is useful for

specifying any pohcy rules that can be translated

into basic actions that other programs will follow.

A more elaborate example is a hospital system

containing several distributed programs, such as

programs that locate a doctor and send emergen.

cy messages, sensor systems that monitor pa-

tients, programs that schedule operating rooms,

and systems that prescribe drugs. Policy rules can

tie these programs together--for example, to

alert a doctor if a patient has an adverse reaction

to a drug, to assemble the necessary resources for

an emergency admission of a patient, or to locate

SunTechnology 103

104 SunTechnology

a replacement doctor if the primary one is not

available. The policy rules can be altered as the

resources of the hospital change, but the pro-

grams supplying the mechanisms need not

change.

Using the Event Monitor offers several advan-

tages. It permits policy rules to be separated from

programs and specified in an explicit and concise

manner and builds a special-purpose program to

implement each rule. The rules can evolve with-

out the necessity of extensive system changes or

reprogrammmg.

The Event Monitor itself is a distributed pro-

gram that behaves somewhat like an expert sys-

tem. It maintains a set of rules, which it continu-

ously and concurrently evaluates. The rules are

written in a realtime version of interval logic 16and

are evaluated against the META Event Manger's
tables and functions.

Availability

ISIS is publically available in the United States and

subject to some minor export restrictions in most

other countries. Commercial support for ISIS is

available from ISIS Distributed Systems, Inc.

Source is provided with the system, which can

currently be used to interconnect Sun, HP, DEC,

Apollo, and Gould computer systems running

variants of Berkeley UNIX. A MACH port has

been completed, and ports to AIX and possibly

VMS, as well as interfaces to the toolkit from

other languages, are planned. The META Operat-

ing System is still under development; plans to

distribute it have not yet been established, m,

Acknowledgments

Listing all the contributors to the ISIS Toolkit and the

META Operating System effort is not feasible. Among

all these people, however, special recognition is due to

Tommy Joseph, Ken Kane, Frank Schmuck, and Mark
Wood, all of whom have made invaluable contributions

to the project. This work was funded by the Depart-

ment of Defense Advanced Research Projects Agency

under grant N00140-87.C-8904, October 1988.

Foomotes and References

1. Camero, N.; and Gelertner D.; "The S/Net's Lin.

da Kernel," ACM Transactions on Computer Systems.

May 1986, pp. 110-129.

2. Hoare, C.A.R, "Communicating Sequential Prw

cesses," Commun. ACM, August 1987, pp. 666-777.

3. Liskov, B., "Implementation of Argus," Proc. 1 lth

ACM Symposium on Operating Systems Principles,

November 1987, pp. 111-123.

4. Spector, A.; Pausch, R.; and Bruell, R.; "Camelot:

A Flexible, Distributed Transaction Processing Sys-

tem," Pr0c. IEEE Compcon 88, San Francisco, CA,

February 1988, pp. 432-437.

5. ISIS is named after the Egyptian goddess who

mummified the remains of Osiris after his defeat in

a battle with Set, bringing him hack to life as the

ruler of the Underworld and setting the stage for the

eventual defeat of Set in a battle with their son

Horus.

6. Birman, K.P.;Joseph, T.; Kane, K.; and Schmuck,

E; The ISIS Programming Manual and User's Guw_e,

Department of Computer Science, Cornell Universi-

ty, June 1988.

7. ISIS does handle the special case of a single ma-

chine that gets partitioned off from the others. In

this case, ISIS treats the partitioned system as if it

had crashed, and it will have to rejoin the operation-

al sites when communication is restored. Tools are

available to make this process as painless as possi.
ble.

8. Our use of the term broadcast should not be con.

fused with the broadcast feature that some LAN

communication devices provide. An ISIS broadcast

is just a message transmission to a process group.

Although a hardware broadcast might be useful for

optimizing the delivery of an ISIS broadcast, ISIS

normally uses point-to-point messages because

hardware broadcasts might not work over bridges

or gateways.
9. Bernstein, P.; Goodman, N.; and Hadzilacous, V.;

Concurrency Control and Recovery in Database Systems,

Addison.Wesley, Series in Computer Science,

1987.

10. Ibid.

11. Birman, K.P.; and Joseph, T.; "Reliable Communi.

cation in an Unreliable Environment," ACM Transac-

tions on Comp_terSystems, February 1987, pp. 147-76.

Bwrnan, K.P.; and Joseph, T.; "Exploiting Repfica-
tion," Arctic '88: An Advanced Course on Dutributed

Systems, Addison-Wesley, 1989.

12. Notice that a second task running tieker_mon

can be started before the first one terminates.

Worse, the view can change while a tieker_mon

task is asleep in the POLL broadcast. The program-

mer who codes an algorithm like this needs to un-

derstand enough about lightweight tasks to realize

that this is a potential problem. In this case, the

g,v->gv_flag is checked to make sure the view is

still valid (current) after POLL terminates.

13. Howard, John H.; Kazar, Michael L; Menees,
Sherri G.; Nichols, David A.; Satyanarayanan, M.;

Sidebotham, Robert N.; and West, Michael J.;

",Scale and Performance in a Distributed Filesys-

tern," ACM Transactions on Computer Systems. Febru.

ary 1988, pp. 51-82.

• Nelson, Michael N.; Welch, Brent B.; and Ouster-

bout, John K.; "Caching in the Sprite Network File-

system," ACM Transactions on Computer Systems, Feb-

ruary 1988, pp. 134-154.

14. Marmllo, Keith; and Schmuck, Frank; "Supplying

High Availability with a Standard Network Filesys-

tern," Proceedings of the Eighth DCS Conference, June

1988.

• Networking on the Sun Workstation, revision B, Feb-

ruary 1986. Sun Microsystems, Inc., 2550 Garcia

Ave., Mountain View, CA 94043.

15. Snodgrass, Richard, "A Relational Approach to

Monitoring Complex Systems," ACM Transactions on

Computer Systems. May 1988, pp. 157.196.

16. Schwartz, R. L; Melliar-Smith, P. M.; and Vogt, E

H.; "An Interval Logic for Higher.Level Temporal

Reasoning," Proceedings of the Second PODC. August

1983, pp. 173-186.

Summer 1989

